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Abstract

Many applications require that a control system must be tolerant to the failure of its com-

ponents. This is especially true for large space-based systems that must work unattended

and with long periods between maintenance. Fault tolerance can be obtained by detect-

ing the failure of the control system component, determining which component has failed,

and reconfiguring the system so that the failed component is isolated from the controller.

This work reports on component failure detection experiments that were conducted on an

experimental space structure, the NASA Langley Mini-Mast.

Two methodologies for failure detection and isolation (FDI) exist that do not require the

specification of failure modes and are applicable to both actuators and sensors. These

methods are known as the Failure Detection Filter and the method of Generalized Parity

Relations. The latter method was applied to three different sensors types on the Mini-

Mast. Failures were simulated in input-output data that was recorded during operation of

the .Mini-Mast. Both single and double sensor parity relations were tested and the effect of

several design parameters on the performance of these relations is discussed. The detection

of actuator failures is also treated. It is shown that in all the cases it is possible to identify

the parity relations directly from input-output data. Frequency domain analysis is used to

explain the behaviour of the parity relations.
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Notation

Vector notation

Vectors will be written as a single column and will be denoted by bold lowercase characters.

We will also use the Matlab notation where a column vector is written on one line and a

semicolon is used to delimit the elements of the vector:

x E R _ _ x = " (0.1)

Xn

= Ix1; ...; _n]. (0.2)

Row vectors will be written on one line and a comma will be used to delimit the elements

of the vector:

x' _ R _×_ ¢=_ x'= [zl, ..., x_]. (0.3)

A few special vectors, which will be defined explicitly, will be written with reversed indices:

,/_ • _l+1 _ _ = [Zl; '''; 30]. (0.4)

Matrix notation

Bold uppercase letters will be used to denote matrices, the corresponding lowercase letters

with subscripts ij will be used to denote the (i, j) entry:

all • • • aln

A • R "_x'_ ¢=:¢, A = " : , aij • R. (0.5)

aml •.. amn

Columns of the matrix will be denoted by the vectors al, ..., a,_, and the rows will be

. The transpose of the matrix will be written as A T.denoted by the row vectors a_; ..., a m





Symbols

ai parity relation coefficients, Equations (2.23) and (2.54)

(x,j parity relation coefficients, Equations (2.36)

A discrete-time state transition matrix, Equation (2.8)

Ac continuous-time system matrix, Equation (2.5)

/3, parity relation coefficients, Equations (2.18) and (2.58)

B discrete-time input matrix, Equation (2.8)

Bc continuous-time input matrix, Equation (2.5)

C output matrix, Equation (2.9)

c_ ith row of C

C_ Equation (2.16)

Cij Equation (2.32)

Ci Equation (2.52)

D feedforward matrix, Equation (2.9)

d_ ith row of D

Di Equation (2.17)

D_j Equation (2.33)

6i Equation (2.53)

Table continues on next page
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Symbols (continued)

ni

nj

R

r_j(k)

rj_(k)

T,

,,(k)

u,(k)

u,(,_,)

y(t)

y(k)

y,(k)

y,(n_)

Equations (2.12), (2.28), (2.40)

Equation (2.28)

field of real numbers

ith SSPR or SAPR residua ), E_quations (2.21), (2.56)

ijth DSPR or DAPR residual, Equation (2.37)

jith DSPR or DAPR residual, Equation (2.38)

sampling period

continuous-time input vector, Equation (2.5)

discrete-time input vector, Equation (2.8)

ith element of u(k)

Equations (2.15) and (2.41)

Equation (2'50) _

continuous-time state vector, Equation (2.5)

discrete-time state vector, Equation (2.8)

continuous-time measurement vector, Equation (2.6)

discrete-time measurement vector, Equation (2.9)

ith element of y(k)

Equation (2.40)

Equation (2.14)
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Chapter 1

Introduction

The requirement that a control system must be tolerant to the failure of its components

and still perform safely and reliably puts stringent requirements on the reliability of the

components that are used. Often the requirements on the reliability are so strict that it can

only be achieved through some form of redundancy. An example is flexible space structures.

Due to their large sizes and lightweight construction they have very low damping so that

active control is necessary to do shape control and damp out vibrations throughout the

structure. Active control is also necessary to perform other tasks like stationkeeping and

attitude control. Systems in space must work for long unattended periods of time and

with long intervals between maintenance so that a control system must be able to perform

satisfactorily even when some of its components, especially the actuators and sensors, fail.

To ensure stability of the control system and continue the mission it is necessary to detect

the failure of a component. Once a failure has been detected and the failed component has

been identified, the control system must be reconfigured to isolate the faulty component

from the controller. Other examples of control systems that require very high reliability are

12
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aircraft engines, nuclear reactors, and process control systems, to name but a few.

To increase the reliability of a system some form of redundancy is usually used. Redundancy

can be divided into two classes, hardware redundancy and analytical redundancy. In hard-

ware redundancy the reliability is increased by replicating the control system components.

A solution that is often applied is to use three or more sensors of the same kind to measure

the same variable. A voting scheme is then employed to find the odd one out. Hardware

redundancy has the advantage that it is insensitive to the magnitude of the failure and can

detect any type of discrepancy. Although hardware redundancy is simple to implement, it

is costly and adds unnecessary weight to the system. When many sensors and actuators are

used it becomes impractical to triplicate each device. As an example, it is estimated that

a large flexible space structure will have approximately 200 control system components.

Tripling so man), components is impractical and not cost effective. Another way to increase

the reliability of a system is through analytical redundancy. Here the redundancy present

in the model of the plant and input-output histories are used to detect and identify the

failure of a component.

The typical form of a failure detection and isolation (FDI) system is shown in Figure 1.1.

The FDI system is divided into two subsystems, the generation of residuals and decision

;- : • : : :: =:::: : : :

tMeasurementlPlant Residual

Generator

Residual

"l DecisionFunction

Failure
Decision

----------------!-

Figure 1.1: FDI block diagram.
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making, as shown in the figure. The Residual Generator uses the commanded inputs to the

plant, the measured outputs from the plant, and a model of the plant to generate a set of

residuals. The generation of residuals has been studied for many years and surveys of these

methods can be found in WiUsky [14], Basseville [1], and Merrill [12]. The Decision Function

analyzes the residuals and based on this analysis makes a decision about the state of the

actuators and sensors. Typical examples of this analysis are simple threshold detectors that

compare the magnitudes of the residuals with a set of thresholds and declaring a failure

when the amplitude exceeds the threshold. Other methods are moving average analysis and

statistical decision theory. In the latter case a priori probabilities of the failure modes are

hypothesized and it is possible to optimize for a specific mode of failure. It is not always

possible to enumerate all modes of failure and obtain the corresponding probabilities. It

is therefore desirable to have a methodology that does not require the specification of

the failure modes and corresponding probabilities of failure. Also, the method should be

applicable to both sensors and actuators. Only two methods satisfy the requirements set

forth, the Failure Detection Filter by Beard [2] (see also Jones [6] and Massoumnia [10]) and

the method of Generalized Parity Relations by Chow [4]. Because all analytical redundancy

methods use a model of the plant they are all sensitive to modelling errors. The design of

robust parity relations has been discussed by Lou et al. [8].

In this work we discuss the application of Generalized Parity Relations to an experimental

fle_ble space structure, the NASA Langley Mini-Mast. We concentrated on the genera-

tion of residuals and made no attempt to implement the Decision Function. It should be

clear from the examples that are presented in later chapters whether it would be possi-

ble to detect the failure of a specific component. The thesis is structured as follows. In

Chapter 2 we derive the equations for Generalized Parity Relations. Two special cases are

treated: namely, Single Sensor Parity Relations (SSPR) and Double Sensor Parity Relations

14



(DSPR).GeneralizedParity Relationsfor actuatorsarealsoderived.Chapter3 describes

the NASA LangleyMini-Mast and discussesthe applicationof SSPRandDSPRto a set

of displacementsensorslocatedat the tip of the Mini-Mast.The performanceof areduced

ordermodel that includesthe first five modesof the mastis comparedto a set of parity

relationsthat wasidentifiedonasetof input-outputdata. Bothtimedomainandfrequency

domaincomparisonsaremade.The effectof the samplingperiodand modelorderon the

performanceof theResidualGeneratorsarealsodiscussed.Chapter4 presentsfailurede-

tectionexperimentswherethe sensorsetconsisted'of twogyrosandanaccelerometer.The

effectsof modelorderandsamplingfrequencyareagainillustrated. Thedetectionof actu-

ator failuresarediscussedin Chapter5. Conclusions and directions for future research are

given in Chapter 6.
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Chapter 2

Generalized Parity Relations

In the previous chapter we gave an outline of an FDI system where, for convenience of

analysis, we divided the system into two functional parts: the Residual Generator and the

Decision Function. In this chapter we give a brief description of a method to generate

residuals. The method, known as Generalized Parity Relations, is treated in detail by

Chow [4] and Dutilloy [5].

There are two forms of analytical redundancy, namely direct redundancy and temporal

redundancy. In direct redundancy a relation is formed by taking a linear combination of

the instantaneous values of a set of sensors whose outputs are linearly dependent. As an

example, let I denote a set of sensors whose instantaneous outputs are linearly dependent

and let the jth sensor be a member of the set. We can then find a relation for the jth

output yj:

yj(t) = _ eiyi(t). (2.1)
iEI
i#j

16



Theresidualis thendefinedas

r(t) = E (2.2)
iEI

i#j

which will be zero (except for noise or other unmodelled effects) when all the sensors are

fully operational and nonzero in the case of a failure. Note that if r(t) is nonzero, any of

the sensors in the set could have failed -- this single relation does not indicate which sensor

has failed.

In temporal redundancy, the histories of outputs and inputs are taken into accouat. The

following example is used to illustrate temporal redundancy: consider a vehicle with mass

m and velocity v(t) with commanded force f(t) being applied to it. The velocity at time

t + At is given by the relation

v(t + At) = v(t) + f(t-_)At. (2.3)
m

ThevelOCity meag_rements v(t) and c(t +At) are now used=together with the commanded

force to form the residual

r(t + At) = v(t + At) - v(t) - J "_At. (2.4)
m

If the rate sensor fails in some way the measured velocity will differ from the actual velocity

so that residual r(t + At) will be nonzero. Thus, the nonzero residual indicates the failure of

the sensor. When the actuator fails, the force applied to the mass will be different from the

commanded force that is used to compute the residual. Hence, the residual will be nonzero

and we can also detect the failure of the actuator. In this example, both the sensor failure

and the actuator failure result in the residual being nonzero; therefore, without additional

information we cannot determine which one of the components has failed when we observe

a nonzero residual.

17



In our discussionsofar weassumedthat the residualisexactlyzerowhenthe systemis in

perfectworkingcondition-- in a practicalFDI systemthis will neverbe the casebecause

there will alwaysbe measurementnoise,disturbances,and modelmismatches.For the

exampleunder discussion,the only parameterfor the plant is the massm and, for the

residual to have a small amplitude, the mass must be known accurately. The best we can

hope for in a practical system is a residual witha small amplitude when all the components

are functional and a large amplitude when a component has failed. Hopefully the difference

between small and large will be large enough so that a threshold detector can then be

used to discriminate between the failed and unfailed states. This example illustrates that

generalized parity relations can be used to detect sensor and actuator failures and that the

residual generator depends on the fidelity of the model to give a small residual when all the

components are fully operational.

In this work we will discuss only temporal redundancy relations. Furthermore, the formula-

tion of parity relations does not require the specification of measurement and process noise

models; therefore, we will not include noise in the plant model. Chow [4] treated the case

where noise is present in the system and discussed methods to obtain robust relations.

2.1 Single Sensor Parity Relations

Generalized parity relations can be constructed so that it is possible to identify which sensor

has failed. The procedure is to construct parity relations from different subsets of the sensors

so that when a sensor fails, only a subset of the parity residuals becomes larger. In this

section we will discuss a specific method that can detect and identify sensor failures. The

method, known as single sensor parity relations (SSPR), is discussed in detail by Dutilloy [5]

and Massoumnla and Vander Velde [11]. The basic idea is to construct a set of relations

18



{r;, i = 1,2, ...} so that each residual ri depends on one and only one sensor Yi. When

a sensor fails only the corresponding residual is affected, and it is therefore very easy to

identify which sensor has fa]led. In general, when an actuator fails, all the single sensor

parity relations will be affected. In this case, the Decision Function (see Chapter 1) will

decide that it was not all the sensors that have failed simultaneously as this is unlikely to

happen.

We will assume that the plant can be modelled accurately by a continuous-time, linear,

time-invariant model given by

_(t) = Acx(t) + Bcu(t), (2.5)

y(t) = C_e(t) + Du(t), (2.6)

where x(t) E R r_*is the state vector, u(t) E R"" is the commanded input vector, y(t) E R "_

is the measurement vector' and Ac e R '_ ×'_;, B_ e R '_ x,_,, C e R '_n_, and D e R '_ x,_.

are the usual continuous-time state-space matrices. When a sensor fails the output can be

modelled by

y(t) = Cx(t) + Du(t) + f(t), (2.7)

where the vector f(t) is an unknown function of time. This simple model is adequate

to describe many failures that occur in practical systems and is discussed in more detail

by Jones [6] and Massoumnia [10]. We will make no attempt to characterize /(t); an

important property of generalized parity relations is that no failure modes and corresponding

probabilities of failure need to be specified. It is important to notice that the output given

by Equation (2.6) is modified in some sense when a sensor fails.

Z

The construction of generalized parity relations requires a discrete-time model of the sys-

tem. Let T_ denote the sampling period. If the input signal u(t) is constant over the

19



interval kTs <_ t < (k + 1)Ts, the continuous-time system of Equations (2.5) and (2.6) can

be discretized as follows:

_((k + 1)Ts)

V(kTs)

0T"= eAcT'x(k)+ eAdTs-r)Scdru(kTs )

= Az(k) + Bu(kTs), (2.8)

= C_c(kTs) + Du(kT,), (2.9)

where

A = e A¢T', (2.10)

/?B = eA¢(T'-r)Bc dr (2.11)

The notation z(k), y(k) and u(k) will often be used to donate z(kT_), y(kTs) and u(kTs)

respectively.

Consider now the ith sensor output yi and let c_ and d_ denote the ith row of C and D

respectively; the output history is easily obtained in terms of the initial state z(k) and

inputs u(k), u(k + 1), ... as

vi(k)

y,(k + 1)

y,(k + 2)

= c:_(_) +dlu(k),

= c_Az(k) + c_Bu(k) + d_u(k + 1),

= c',A2z(k) + c_ABu(k) + c_Bu(k + 1) + d_u(k + 2),

y,(k + n_) = c_A'_'z(k) + c_A_'-'Bu(Ic) +... + c_Bu(k + ni - 1) + d_u(k + hi).

(2.12)

These equations can be written in a compact form as follows:

y,(n_) = Ci_(k) + D,u(ni), (2.13)
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where

y_(_) = [y_(k);y,(k + 1); ...; y_(k+ _,)], (2.14)

= [u(k); u(k + 1); ...; u(k + hi)l,

= [c_; c_A; ...; c_A'_'],

a i =

d_ 0 0 ...

c_B d_ 0 ...

c_AB c_B d_ ...

: : : "..

c_An,-1B c_A'_,-2B c_An,-3B ...

0

0

0

d_

(2.17)

with Yi E N n'+l, u E R (n'+l)n", Ci E R (n'+l)xn_ and Di E R ('_+l)x('_'+])"". Note that the

Cayley-Hamilton theorem assures that Ci will be singular for ni >___;z. If ni is chosen large

enough so that the matrix Ci becomes singular, we can find a vector 13, E R '_+a in the left

null space of Ci so that

O-(c, = 0, (2.1s)

t3i = [/3i,n,; _i,n,-1;..-;/3i,1; 1], (2.19)

where we have scaled the vector so that last element, _o = 1. The reason for this choice wiU

become clear later. If the system is observable from the ith sensor, ni = n_.

Multiplying Equation (2.13) by _T and rearranging we get

#ry,(ni) - 13_Diu(n,) = O. (2.20)

Equation (2.20) is called the ith single sensor parity relation. When the ith sensor fails, the

output equation is modified in some unknown way so that the above relation will not hold.

21



Wedefinethe ith residual as

r (k+ hi) = - ZTo .(n,)

= -

: ri,y -- ri,u

(2.21)

(2.22)

where ri.y is the contribution of the ith output, ri,_, is the contribution of all the inputs and

c_ = /3TD_ (2.23)

= [O_i,l,n,; O_i,2,n,; ...; O_i,nu,n_; Oi,l,n,-1; O_i,2,ni-l_ ..._ Oi,nu,n,-l; "''_

OZi,l,0; _i,2,0; ...; Oi,nu,0], (2.24)

ai E R (n'+l)n_ . When all the sensors and actuators are fully operational, the model matches

the plant exactly, and there are no measurement noise and disturbances, all the residuals

ri, i = 1,2,..., ny will be zero. When the ith sensor fails, ri(k) will be nonzero and because

the residuals rj(k), j # i, are not functions of the ith sensor, they will remain zero. Thus it

is possible to detect and identify the failure of the ith sensor. Equation (2.21) has the form

of a multl-input single-output finite impulse response filter and both the system input vector

u(k) and the scalar output yi(k) are inputs to the residual generator. A block diagram of

the SSPR Residual Generator is shown in Figure 2.1. Because the system under discussion

is time-invariant the starting time is arbitrary. Using this property and Equations (2.19)

and (2.24), we can rewrite Equation (2.20) as summations,

which is an ARX model for the system. (ARX = autoregressive with external input.)

The ARX description motivated the choice for _0 = 1 as this gives a monic denominator

polynomial for a single-input single-output system. If we can find an ARX model for the

22



Yi

Ul

Un u

SSPR
Residual

Generator
• r i

Figure 2.1: Block diagram of SSPR Residual Generator.

plant we do not need to find the state-space matrices. Many system identification techniques

immediately identify an ARX model from input-output data; see for example Ljung [7]. We

can, therefore, use standard system identification techniques to identify the coefficients of

Equation (2.25) and simply rearrange the equation to obtain a parity relation. Seen in

another way, constructing a robust parity relation is equivalent to finding a robust ARX

model for the plant.

Double Sensor Parity Relations

In some practical cases single sensor parity relations do not provide a reliable indication of

sensor failures. By using combinations of two or more sensors it is possible to construct more

complex parity re]atlons. The different combinations must be selected so that it would still

be possible to identify which sensor has failed. One such method, which will be referred to

as double sensor parity relations (DSPR), combines the outputs of two sensors. The double

sensor parity relations are derived as follows: let the ith and jth measurements be given by

y_(kTs) = c:x(kTs) + dr,u(kTs), (2.26)

yj(kTs) = c_x(kT,) + d;u(kT,), (2.27)
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where ci, ca, d i and dj are the ith and jth rows of C and D respectively. Similar to the

single sensor case, we write down a set of equations that relates consecutive outputs with

an initial state and the inputs to the system:

yi(k) = c_x(k) +d_u(k),

yj(k) = c_.(k) + a'j,4k),

yi(k + 1) = c_Ax(k) + c_Bu(k) + d_u(k + 1),

y;(k + 1) = c;A.(k) + ¢',Bu(k) + d_,,(k + 1),

yi( k + ni - 1)

yj(k + nj)

-'*'_'-zx(k) + c_A'_'-2Bu(k) + + d_u(k + ni 1),C i .d-.I ....

= c_A'_'x(k)+djA'_J-1Bu(k)+...+d_u(k + nj),

= c_A'_'x(k) + c_An'-lBu(k) +...+ d_u(k + hi), (2.28)

where we assume that ni = nj + 1. These equations can again be written in a more compact

form similar to Equation (2.13) but, to simplify notation, we will first reorder the equations

so that all the equations involving Yi appear first. We then have

( yi(ni) ) = Cijw(k) + Diju(ni), (2.29)

where

y,(ni) = [y,(k); yi(k + 1); ...; y,(k + hi)], (2.30)

yj(nj) = [yj(k); yj(k + 1); ...; yj(k + nj)], (2.31)

... ' • c'A'b], (2.32)Cij = [c_; c_A; ;c_An';c;; cjA, ...;
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(°'/D{j = , (2.33)

05

where D, and Oj are defined by Equation (2.17) with n_ + 1 and nj + 1 rows respectively.

Because we have assumed that nj is one less than hi, the last n_, columns of Dj will be zero

because yj(k + nj) does not depend on u(k + n_). The condition for constructing a double

sensor parity relation is given by Chow [4]: the observable subspaces of the ith and jth

sensors must overlap. Assuming this is the case, we can find vectors _i and _) so that

[ZT, = 0. (2.34)

Multiplying Equation (2.29) with [j3_,/3 T] we get the ijth double sensor parity relation

(2.35)

where

exij = [/3T, t3T]Dij. (2.36)

A block diagram of the DSPR Residual Generator is shown Figure 2.2. If either the ith or

L[

yj DSPR
ul Residual
• " Generator

Unu r I

rij

Figure 2.2: Block diagram of DSPR Residual Generator.

the jth sensor fails the above relations will not hold; we define the ijth DSPR residual rij
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as

s:O s=l r----I $----0

In general, when the ith sensor fails, the set of residuals rlq, i < q <_ n v and rpi, 1 _<p < i

will all be nonzero. This set uniquely identifies the ith sensor.

If, instead of using the ith measurement as the last row in Equation (2.28) we use the jth

measurement, n) will equal ni + 1 and we get a dual relation and residual. We will refer to

these as the jith DSPR and residual respectively. The residual in this case is

ni n3 _u r_3

Tj,(k) = (2.3s)
s=l $=0 r=l s=O

2.3 Actuator Parity Relations

In the example at the beginning of this chapter we have shown that generalized parity

relations can be used to detect actuator failures. Dutilloy [5] has shown how to construct

actuator parity relations given the discrete-time system description, Equations (2.8) and

(2.9), for the case D = 0. The case where D is nonsingular will be treated here. To construct

the actuator parity relations we again find the output history as in Equation (2.12) but now

we must use the same number of sensors as actuators, i.e., we must use a subset of sensors

so that nv = n_,. The reason for this requirement will become clear later in the derivation.

We will assume that this is the case and that the output is given by Equation (2.9). The

set of output equations can be written as a matrix-vector equation

y(ni) = Cx(k) + Do(hi), (2.39)

where

y(n,) = [y(k); y(k + 1); ...; y(k + ni)], (2.40)
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u(n_) = [u(k); u(k + 1); ...; u(k + n_)] (2.41)

= [ux(k); u2(k); ...; u,,_(k); ux(k+ 1); u:(k+ 1); ...; un,,(k+ I); ...

Ul(k "t- hi); u2(k -t- ni); ...; Unu(k q- hi)], (2.42)

D

[C; CA; ... ; CA"' ],

D 0 0 ... 0

CB D 0 .... 0

CAB CB D ... 0 ,

. . . .° •

CA'_'-IB CA'_'-2B CA'_'-3B ... D

(2.43)

(2.44)

y E R (ni+l)ny, g E ]{(n,+l)nu, C E R (n'+l)n_xn', and D E R (n'+l)'_yx('_'+l)'_. Because we

have chosen nu = n_, the matrix D will be square. Assuming D is in_.'e__ible, we can multiply

Equation (2.39) by D-1 and after rearranging we get

u(ni) = (-D -1C)x(k) + D-ly(n_). (2.45)

This equation is similar to Equation (2.13) with the roles of the outputs and the inputs

interchanged. By proceeding as before, we can construct single actuator parity relations

(SAPR) and double actuator parity relations (DAPR). A little more work is necessary for

the actuator case because u(ni) contains all the elements of the input in an interleaved

way as shown in Equation (2.42). For example, if we want to construct a SAPR for the

ith actuator, we must form a vector of inputs that has only ui's as elements, starting with

ui(k) and taking every n,,th element of u(ni). In order to refer to the rows of D -1C and D -1

in an easy way we define the following temporary matrices

C = -D -_C (2.46)

27



[i -' ] )= _" ;...; C(n,+i)n_ , (2.47

= D-1 (2.48)

We can now set up equations similar to Equation (2.12) for the ith actuator,

5i(ni) = [ui(k); ui(k + 1); ..., ui(k+ ni)] (2.50)

= C,x(k) + 3iy(ni), (2.51)

c, = [-' . -' ] (2.52)Ci; _+nu, "''; Ci+n,_n, E

7, R(,_,+I) ×(,_,+1),_. (2.53)= _+n_, • • • ;

We now find a vector czi so that

The ith SAPR residual is defined as

r_(k) =

where

_T

_TC = 0. (2.54)

o,Tb,y(,_d- _To_(_) (2.55)

_Ty(_) - ,_'o_(_) (2.56)
ny vt i r¢i

_ _,,.v_(k - _) - _ .,,,u,(k - _), (2.5:)
r=l s=O s----O

= oTb, (2.58)

#;,1,o; _,_,o;... ;/3i,._,o], (2.59)

Because of the requirement that n u = n_,, it was found that there is usually more than

one vector in the left null space of Ci. These vectors give true parity relations (see Lou
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et al. [8]) as they all satisfy Equation (2.54) exactly. It is not clear at this point how to

select between the different vectors, and whether one is necessarily "better" than another.

A block diagram of the SAPR Residual Generator is shown in Figure 2.3.

u; ![ SAPRY.1 . Residual
Generator

yn_ "1

• r i

Figure 2.3: Block diagram of SAPR Residual Generator.

In a similar way we can construct DAPR of the form rij and rji. Although we will show

experimental DAPR results, we will not derive the equations here as the procedure leading

to the results is analogous to the single actuator case.

2.4 Example

To illustrate some of the ideas discussed in the foregoing sections, we present a simple

example of a second order system. Many practical systems, including the Mini-:\Iast which

we will discuss in more detail later, are described by the following m-mode state-space

model

_(t) •.. =(t) + •

0 Am B_

_(t) (2.60)
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where

Ai "-

\

0 1 l, i= 1,...,m,

)-tu_ -2(itui
(2.61)

Si =

0 0

| , i= 1,...,m,

)bi,1 • " bi,n,_

(2.62)

where -,'i is the natural frequency of the ith mode with corresponding damping ratio (i. We

will analyze only one of the second order blocks. In order to simplify some of the hand

calculations we will further write the continuous-time state-space model in the observable

canonical form (see Chen [3])

( ) ()0 2 2
td n

_(t) = -w, x(t) + u(t), (2.63)

1 -2(tu,, 0
/

y(t) = [0 1]z(t) (2.64)

= c'z(t). (2.65)

The following parameters will be used:

sampling period

natural frequency

damping ratio

Ts = 0.015 seconds,

tun = 5 rad/s (0.8 Hz),

_"= 0.01.

The discretized system is given by

m(k + 1) (/(o.3746= 0.9972 -0.3774 z(k) +

0.0150 0.9957 0.0028
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= Ax(k)+ bu(k),

= [0 1]x(k)

= c'x(k).

(2.66)

(2.67)

k

We can also write this single-input single-output system as a difference equation

y(z) = c'(zI- A)-lbu(z) (2.68)

= '_(z.__.2)u(z)
d(z)

b21z -1 + (a21511 - allb21)z -2

= 1 - (all + a22)z -I + (alia22 - a12a21)z -2u(z)

0.002810z -1 + 0.002808z -2

= 1 - 1.992883z -1 + 0.998501z -2u(z)" (2.69)

The difference equation describing the sYstem is

y(k) - 1.992883y(k - 1) + 0.998501y(k - 2) = 0.002810u(k - 1) + 0.002808u(k - 2). (2.70)

The SSPR residual is easily found as

2 2

r = Zz.y(k- _)- _ _:(k - _), (2.71)

where

fi_ = [0.998501; -1.992883; 1], (2.72)

a = [0.002808; 0.002810; 0]. (2.73)

Note that ao = 0; this is expected because there is no direct feedforward from the input to

the output. The plant and Residual Generator are shown schematically in Figure 2.4. Note

that the transfer functions of the Residual Generator are the numerator and denominator

of the transfer function of the plant -- the residual is formed by multiplying the output

y(z) by the denominator polynomial, the input u(z) by the numerator polynomial, and

a
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Residual Generator

Plant

d(z) ry

, r

Figure 2.4: Block diagram of the plant and SSPR Residual Generator.

subtracting the latter from the former. The transfer functions for this Residual Generator

are shown in Figure 2.5. The transfer function from y to r has a large magnitude at high

frequencies. This will always be the case for practical systems as they have a natural roll-off

at high frequencies. The high gain at high frequencies can be a source of trouble if we have

noisy sensors or unmodelled high frequency dynamics.

The coefficients multiplying the input sequence are very small -- it was first believed that

this is due to the small damping in the system but it is easily shown that this is not

necessarily the case. By repeating the above example and changing the damping ratio by a

factor of ten to _ = 0.1, we get the following coefficients:

(

0.01

0.10

O_2 o_ 1

0.002808

0.002783

0.002810

0.002797

The discretization step was also carried out symbolically and the detail can be found in
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Figure 2.5: Transfer functions of the SSPR Residual Generator. The transfer =::

functions are periodic and are shown up to half the sampling frequency.

Appendix A. We see that the elements of the A and B matrices have factors like e-¢_'"Ts,

cos(w,_v/i _ (2 Ts) and sin(w,_vfi - - (2 To). The small coefficients are a result of the product

of (, w,_, and Ts. Even if we had a larger damping ratio (, these elements of _ will still be

small because T_ is small. For a given practical system we have no control over _ and the

only parameter that we can vary (to a limited degree) is the sampling period.

For the single-input single-output case, the single actuator parity relation is identical to the

single sensor parity relation. Therefore, only one relation exists and it is not possible to
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determinefrom a nonzeroresidualalonewhetherit wasanactuatoror sensorfailure.
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Chapter 3

Displacement Sensor Failure

Detection

3.1 Introduction

In this chapter we discuss a series of failure detection experiments that were conducted on

the Mini-Mast. Specifically, we will look at the detection of displacement sensor failures of

the Mini-Mast and discuss several factors that influence the performance of the Residual

Generators. We will also compare parity relations obtained from a state-space model with

parity relations identified directly on a set of input-output data. The parity relations

obtained from the state-space model will be referred to as the model-based relations and

those obtained by identification as the identified relations. First, we give a brief description

of the Mini-Mast.

The Mini-Mast is an experimental truss at the NASA Langley Research Center, Hampton,
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Virginia. The mastis deployedverticallyand is rigidly fixed at its base. It has18bays,

eachof length 1.12meter(3.68ff); the total lengthof the mastis 20.16meters(66.14ft).

Thebaysarenumbered1through18,with Bay18at the top. Themasthasthreemember

types: longerons,battens,and diagonals.Longerons are parallel to the vertical axis and

provide beam stiffness and strength in bending. Battens are in the beam face planes and

provide stability. Diagonals, also in the beam face planes, provide stiffness and strength

in torsion and shear. The mast is shown schematically in Figure 3.1. The truss has 57

corner joints with stainless steel pins that allow the longerons and diagonal members to be

hinged, so that it is possible to retract and deploy the mast. Three torque wheel actuators

\J

_7

_7

_7

\J

\J

\J

\J

,,,,j
x,j

J

J

\J

\J

Bay 18

Sensor 2

_( ensor 3

Sensor 1 _y

Figure 3.1: Schematic diagram of the Mini-Mast and orientation of the dis-

placement sensors. The sensorsmeasure displacements normal to their surfaces,
relative to a fixed structure.
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are mounted at the top of the mast parallel to the XYZ axes. By applying voltages to

these motors, it is possible to apply torsional and bending torques to the mast. These

actuators were used in the failure detection experiments to excite the mast. The mast is

also instrumented with a full set of accelerometers, rate gyros, and displacement sensors.

The displacement Sensors are mounted so that each measures displacements normal to its

reference surface, and relative to a fixed structure that is built around the mast. Three

displacement sensors are mounted at each bay but only the three sensors at Bay 18 were

used.

A finite element model for the Mini-Mast has been developed by NASA to analyze the modal

frequencies and mode shapes. A brief summary is given here; detail can be found in Pappa et

al. [13]. The first two modes are the first bending modes, oriented in the X and Y directions.

The natural frequencies of these modes are approximately 0.65Hz. This is followed by the
: .... :=:

first torsion mode with a natural frequency of approximately 4.4ttZ. The fourth and fifth

modes are the second bending modes with natural frequencies of approximately 6.2Ih. The

directions of the second bending modes are rotated by 45 degrees from the X-Y directions,

thus coupling the bending responses. The first and second of 108 local modes, caused mainly

by the diagonal members, have natural frequencies of approximately 14.SHz. Other modes

are: second torsional at 20.86Hz, third bending modes at 29.79Hz and 30.94Hz, third

torsional at 38.83Hz, fourth bending modes at 40.12Hz and 43.41Hz, fourth torsional at

54.30Hz, fifth bending modes at 66.34Hz and 70.25Hz, and fifth torsional mode at 71.88Hz.

The state-space model used to generate the model-based parity relations included the first 5

modes of the system; the modal frequencies and damping ratios used are shown in Table I.

The state-space model was obtained by Drs. Raymond Montgomery and David Ghosh of

NASA Langley Research Center by an analysis of input-output data in preparation for

the design of a control system for the Mini-Mast. The state-space matrices are given in

|
|
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AppendixB.

Table I, State-space model modal frequencies and damping ratios

Mode ¢ w [Hz]

First bending 0.0323 0.8559

First bending 0.0213 0.8547

First torsional 0.0717 4.2933

Second bending 0.0238 6.1186

Second bending 0.0100 6.1669

[rad/s]

5.3778

5.3702

27.0133

38.4440

38.7478

Several experiments were conducted on the Mini-Mast to obtain input-output data sets.

The mast was excited by driving the torque wheels with random signals. For the experi-

ments discussed in this chapter, the input signal amplitudes were independent, identically

distributed with a uniform probability density function. The sampling period Ts was 15 ms.

This is a baseline sampling period that will be used by the control system for the mast.

The input signals were held constant for four sampling periods, i.e., for 60 ms. This choice

gave the freedom to simulate different sampling periods when analyzing the sensor parity

relations. Unfortunately, keeping the amplitude constant for more than one sampling pe-

riod but taking samples every sampling period results in a signal with a spectrum that

has zeros at frequencies lower than half the sampling frequency. A typical spectrum of an

input signal that was held constant for four sampling periods but that was sampled every

sampling period is shown in Figure 3.2. Fortunately, due to nonlinearities of the actuators

and joints of the Mini-Mast, no zeros occurred in the output spectrum.
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Figure 3.2: Spectrum of the input signal. The input was held constant for 4 sam-

piing periods (4Ts) but samples were taken every sampling period, Ts = 15 ms.
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The three displacement sensors at the tip of the mast will be referred to as Sensor D1, Sen-

sor D2 and Sensor D3 with corresponding measurements Yl, Y_ and Ya and SSPR residuals

rl, r2 and ra. The transfer functions from the ith measurement Yi to the ith residual ri will

be called Bi(z) and the transfer functions from the inputs ul, ..., u_ to ri will be denoted

by Ai,l(Z), ..., Ai,n_(z). In some experiments we will use an increased sampling period of

30 ms, which is twice the baseline sampling period; this will be referred to as 2T,. The order

of the parity relation, n i in Equation (2.25), will be referred to as the number of lags. Note

that for n i lags we are actually using ni + 1 samples of the corresponding measurement:

ni past values plus the current sample. Corresponding to the 10 dimensional state of the

state-space model used; the m0del-based parity relations incorporate 10 lags.
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The spectrum of y2 is shown in Figure 3.3. In this figure we clearly see the first bending mode
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Figure 3.3: Spectrum of Displacement Sensor 2.

35

at approximately 0.9 Hz and the first torsional mode at 4.3 Hz. The peaks in the spectrum

at 12.6Hz, 13.9Itz and 16.6Hz correspond to the local modes. The second torsional mode

is at approximately 21.4Hz. Further, though the input signals have zeros in their spectra

(see Figure 3.2), they do not show up in the spectrum of the output signal. Note that 256

point DFTs were used to compute these spectra so that we do not have very fine spectral

resolution. The spectra of the other two displacement sensors are similar in nature to the

one just shown and will not be shown here. When we refer to a particular behavior of a

residual later in this work only one example will be given to illustrate the point. If a specific

example does not represent all the sensors it will be noted explicitly.
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Failuresof the sensors were simulated in the data by modifying the recorded data. In most

of the examples that we will discuss the sensor is failed to zero by simply zeroing the output

data. (See Equation (2.7) for the modelling of failures.) We will also choose the failure

times to be approximately in the middle of a plot so that it will be easy to compare the

amplitude of the residual before and after the failure.

3.2 Model-based Single Sensor Parity Relations

Figure 3.4 shows the failure of Sensor D1 that has failed to zero at sample number 213.

The failure is clearly indicated by the large transient in the residual. In this figure we also

see a behavior that was typical for all model-based residuals for displacement sensors; the

residual has a large amplitude while the sensor is in perfect condition followed by a smaller

amplitude when the transients excited by the failure are gone. In Chapter 2 it was shown

that the inputs to the ith Residual Generator are all the control inputs and, for single

sensor parity relations, the ith measurement. Equation (2.22) further shows that the ith

residual ri has two components ri,y and ri,_, corresponding to the ith measurement and

all the inputs. The residual is defined as the difference between these two components.

Therefore, except for noise and unmodelled effects, we expect these two components to be

equal. Plotting the components h,u and rl,,, separately in Figure 3.5, we see that this is not

so. The component rl.u has a much larger amplitude than h,_, and there is no similarity

between the two components. At first it was believed that this discrepancy is due to the

small damping of the mast but the example at the end of Chapter 2 clearly indicates that

this is not the reason. This difference in amplitude of the two components explains the

previously mentioned behavior that the residual amplitude is large while the sensor is fully

operational and small when the sensor has failed. The reason for the mismatch will be given
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Figure 3.4: Displacement Sensor D1 failure. Top: Sensor D1 output yl. Bot-

tom: model-based SSPR residual rl. Sensor D1 has failed to zero at sample

number 213.
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Figure 3.5: Components rl,u (top) and rl,_, (bottom) of model-based SSPR r].

Sensor D1 has failed to zero at sample number 213.
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when we discuss the transfer functions of the Residual Generator.

The SSPR residual r3 is shown in the top of Figure 3.6. In this example Sensor D3 has

failed to zero a:t sample number 235. As before, we see a large transient when the failure

occurs. The bottom of Figure 3.6 shows the same residual, but this time Sensor D3 has

failed at sample number 234, one sample (15 ms) earlier. Although a brief pulse is visible,

we did not get a clear failure signature and the spike could have been caused by noise.

This inability of the model-based single sensor parity relations to give a clear indication

of sensor-off failure modes occurred often and the reason for the poor performance will be

explained later. We now show a different failure mode.

A noisy sensor was simulated by adding white noise to the output of Sensor D2. The

plot at the top of Figure 3.7 shows the output of Sensor D2 with noise added to it from

sample number 240. The standard deviation of the noise was one hundredth that of the

standard deviation of the measurement Y2. The effect of the noise is barely visible in the

measurement. The corresponding SSPR residual, r2, is shown in the bottom of Figure 3.7.

The failure is clearly indicated by the residual. So the added-noise failure mode is clearly

detected by the parity relation. However, this extreme sensitivity of the residual to noise

can be a problem when we are working in a really noisy environment. Before we discuss

the transfer functions of the Residual Generators we first turn to parity relations identified

on input-output data.
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Figure 3.6: Top: model-based SSPR r3 when Sensor D3 has failed to zero

at sample number 235. Bottom: the same residual when Sensor D3 failed at

sample number 234, one sample earlier.
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Figure 3.7: Top: Sensor D2 output. Noise was added to Sensor D2 from sample

number 240. Bottom: Model-based SSPR r2.
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3.3 Identified Single Sensor Parity Relations

It was noted in Chapter 2 that single sensor parity relations correspond to an ARX model

of the plant. Using a different set of input-output data, the coefficients of the parity relation

(see Equation (2.25)) were identified using a least squares criterion. The length of the data

set was slightly less than 30 seconds. These parity relations, which will be referred to as

identified relations, were applied to the same data used in Section 3.2. Figure 3.8 shows

E
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xlO-5
I t I I

.... t. ,,1 1 , I

0 1_ 2_ 3_ 4_ 5_

Sample number

Figure 3.8: Identified SSPR residual r3. Sensor D3 has failed to zero at sample

number 234. Compare with the plot at the bottom of Figure 3.6.

the identified SSPR. residual r3 when Sensor D3 has failed to zero at sample number 234,

i.e., at the same time as portrayed in the bottom graph of Figure 3.6. In that case the

model-based SSPR failed to give a clear indication of the failure. In Figure 3.8 we see

that the identified residual gives a very different failure signature. First, note that the
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amplitudeof theidentifiedresidualissmallerthantheamplitudeof themodel-basedresidual

by approximatelytwo ordersof magnitude.Furthermore,the amplitudeof the identified
v

residual is small while the sensor is in good condition and large while the sensor is faulty,

the opposite of what we had before. Clearly, this case is much closer to what we would

like to see. To highlight the difference between the model-based and identified relations, we

show the components r3,y and r3,u in Figure _.9. Here we see that the contributions r3,_

and r3,_, are approximately of the same magnitude. We also see in these figures that the

two components have similar wave forms and thus, when subtracted from each other, will

result in a residual with a small amplitude. Careful comparison between Figures 3.6 and 3.9

further shows that, while the sensor is in working condition, the model-based residual has

more high frequency content than the identified residual. The reason for this will become

clear when we discuss the different Residual Generator transfer functions in the next section.

With the identified relations we have the luxury of easily increasi_ g the number of lags used

in the parity relations. In Figure 3.10 we show the residual of an identified SSPR relation

with 20 lags. To make a comparison with a previous failure we have chosen a failure of

Sensor D3 at sample number 234. Comparing Figure 3.10 with Figure 3.8 we see that

increasing the number of lags results in a residual with a smaller amplitude while the sensor

is in good health and a slightly larger residual when the failure is present. Therefore, at the

expense of an increase in the number of computations, we can improve the failure signature

by choosing a higher order model.
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3.4 Transfer functions of model-based and identified Single

Sensor Parity Relations

To explain some effects that we have seen in the preceding sections and further highlight

the differences between the model-based and identified SSPR residuals, we now turn to the

transfer functions of the corresponding residual generators.

In Chapter 2 it was noted that a SSPR Residual Generator is a multi-input single-output

finite impulse response filter so that the individual transfer functions have no poles (except

for poles at the origin). The zero locations of the model-based and identified Residual

Generators for the transfer function B2(Z) are shown in Figure 3.11. We see that the

identified relation has zeros at higher frequencies than the model-based relation. The zeros

of the model-based Residual Generator are simply the poles of the plant (see Section 2.1),

and the poles have been constrained to the first five modes of the mast by our selection of

the model. During the identification process no constraint is placed on the pole locations

and the resulting model thus gives poles that give the best fit over all frequencies. Except

for one complex zero pair, there is little correspondence between the zero locations of the

two transfer functions.

The transfer functions of the model-based and identified Residual Generators are compared

in Figure 3.12. We first note that the model-based transfer function from Y2 to r2 has a

small gain at low frequencies and a high gain at high frequencies. This high gain at high

frequencies explains the extreme sensitivity that the residual showed to a noisy sensor (see

Figure 3.7). Although it was not shown there, the corresponding identified residual was less

sensitive to noise. The high gain is also responsible for the good transient that we have seen

in Figure 3.4. In that figure we see that there was an abrupt change in the measurement

at the time of failure. For the example shown at the bottom of Figure 3.6, the time of
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Figure 3.11: Left: Zero locations of the model-based Residual Generator transfer

function Y2 to r2. Right: Zero locations of the identified Residual Generator

transfer function y2 to 7"2.The solid line circles have radius 1. Note that the

model-based Residual Generator has two closely spaced zeros at approximately

4S degrees.

failure was chosen so that the output y3 was close to a zero crossing point so that there

was no abrupt change in the signal. The high gain at high frequencies also explains why

the components r2.y and r2,_ have such different amplitudes -- noise in the measurement is

amplified considerably so that the contribution of that component is much larger than the

contribution of ul, ..., u,_. The model-based transfer functions A2,1(z), ..., A2,3(z) also

have smaller gains at low frequencies than the identified relations. The identified relation

clearly puts more emphasis at low frequencies and less at high frequencies.

The spectra of the model-based and identified residuals are shown in Figure 3.13. We see

that the model-based residual has very little frequency content at low frequencies and much

greater frequency content at high frequencies. Note that the difference of the minimum
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Figure 3.12: Transfer functions of the model-based (solid line) and identified

(dashed line) SSPR Residual Generators. Top left: Y2 to r2, top right: ul to

r2, bottom left: u2 to r2, bottom right: u3 to r2.

at low frequencies and the maximum at high frequencies is almost 180 dB! Clearly, the

model-based Residual Generator does a very good job at frequencies below 7Hz. However,

because we have a reduced order model with an excellent match at low frequencies, there is

a significant mismatch at high frequencies and this prevents the model-based relations from

obtaining good performance. The large high frequency content was pointed to earlier when

we discussed the differences between model-based and identified relations in Figures 3.5, 3.6

and 3.9. Note further that the model-based spectrum clearly shows a peak at approximately

14.4Hz that corresponds to the local modes which are not included in the state-space model.
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Figure 3.13: Spectra of the model-based and identified residuals.

The spectra of the identified residuals exhibit an almost flat response over all frequencies.

The limitation of the 10 lag relation clearly shows up as a peak at approximately 0.9Hz,

the first bending mode, as well as a peak at approximately 6Hz, the second bending mode.

Increasing the number of lags to 20 clearly shows an improved match at the first bending

mode and a spectrum with a slightly smaller magnitude over most of the frequency band.

In the next section we investigate the effect of the sampling period on the performance of

the Residual Generators.
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3.5 Increased Sampling Period

It was found that increasing the sampling period had a significant effect on the identified

SSPR residuals. An increase in the sampling period gave improvement on the model-based

SSPRs. Using the same data set as before the sampling period was increased to 30 ms,

i.e., 2T_. Figure 3.14 shows the identified residual ra when Sensor D3 has failed to zero at

0

-2

_0-5
F 1 [ I "

50 100 150 200 250

Sample number

Figure 3.14: Identified SSPR r3, 10 lags, sampling period 2Ts. Sensor D3 has

failed to zero at sample number 117.

sample number 117; this corresponds to the same time as we had in Figures 3.9 and 3.10.

Here we clearly see that doubling the sampling period leads to a major improvement in the

failure signature. The same failure is shown in Figure 3.15 where we have used a sampling

period of 30 ms and a parity relation with 20 lags -- an excellent failure signature.
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Figure 3.15: Identified SSPR r3, 20 lags, sampling period 2T_.

It was hoped that the transfer functions of the corresponding Residual Generators would

hint at why the increased sampling period leads to so much improvement in the residual but

an analysis turned out to be fruitless. One possible reason is that at 10 lags only a small

portion of one period of lowest frequency of interest, i.e., the first bending mode at 0.9Hz,

counts in the computation of a relation -- with noise contaminating the measurement, it

is difficult to capture the underlying low frequency component. Increasing the sampling

period results in samples taken further apart so that, using the same number of lags, a

greater portion of one period is covered. Another possible reason is that, at 2Ts, a smaller

frequency band needs to be matched by the ARX model leaving more freedom to give a

better model at low frequencies. The transfer functions of 20 lag, ITs and 20 lag, 2Ts

identified SSPR Residual Generators are compared in Figure 3.16. We see that the 2Ts

transfer functions tend to have more peaks and dips at low frequencies compared to the 1T_
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counterparts, indicating that more modes are being included at the lower frequencies.

3.6 Double Sensor Parity Relations

In this section we present several failures where DSPRs are used to detect the failure.

As before, we will compare model-based relations with identified relations and discuss the

effect of increased number of lags and increased sampling period on the performance of the

Residual Generators.
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Figure3.17showsthe model-basedresidualsr12andr13whereSensorD1hasfailedto zero

at samplenumber238.A brief transientis visibleat the time of failure. Notefurther that

the residualremainssmallafter the transientis gone. Like the model-based SSPRs, the

model-based DSPRs sometimes fail to indicate the failure of a sensor. An example is shown

in Figure 3.18 where Sensor D1 has failed to zero at sample number 250. In this example

the residuals give no indication of the failures at all. Careful inspection of the plot at the

bottom of the figure shows that the first part of the residual up to sample number 250 has

a high frequency content while the part from sample number 250 to the end shows some

underlying low frequencies. This is to be expected as the DSPR Residual Generator has as

inputs the plant inputs ul, u2, u3 as well as the two measurements Yl and Y3. Therefore,

even when Sensor D1 fails to zero, the dynamics of the mast are still being fed to the

Residual Generator through Sensor D3. We thus would expect that this signal, which has

low frequencies in it, should appear at the output of the Residual Generator.

The detection of the failure of Sensor D2 at. sample number 150 by an identified DSPR

is shown in Figure 3.19. Both the residuals rl_ and r32 give a clear indication of the

failure. The number of lags used was 10. Although this is a different sensor and the parity

relations have more lags thanthe mo_[eI-based reIation, a comparison will still be made. We

note that the identified residuals are significantly smaller than the model-based residuals.

Furthermore, the difference in frequency content of the residual before and after the failure

is large. This invites signal processing to-improve the failure signature. It was noted in

Section 2.2 that it is possible to construct a dual parity relation for a specific pair of sensors.

The dual residuals r21 and r23 are shown in Figure 3.20. Clearly, there is a marked difference

in the amplitudes of the residuals when compared to the ones in Figure 3.19. When this

difference was first noted it was believed that this is because Sensor D2 appears as the first

sensor in the relation but this big difference did not manifest itself in the other relations
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Figure 3.17: Model-based DSPR residuals r12 and r13. Sensor D1 has failed to

zero at sample number 238.
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Figure 3.18: Model-based DSPR residuals r12 and r13. Sensor D1 has failed to

zero at sample number 250.
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Figure 3.19: Identified DSPR residuals r12 and r32. Sensor D2 has failed to zero

at sample number 150.
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Figure 3.20: Dual identified DSPR residuals r2z and r23. Sensor D2 has failed

to zero at sample number 150.
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and their dual forms.

Generalized parity-relations do not require the specification of the failure mode. The de-

tection of a different type of failure by identified relations is shown in Figure 3.21. Here a

gain reduction Of 50_ in the Output of Sensor D3 was simulated from sample number 180

to 500. Both residuals clearly indicate this failure.

Increasing the number of lags in the relations again resulted in improved failure signatures.

Figure 3.22 shows the residuals where we have used 20 lags in the DSPRs. This is the same

failure that we have seen in Figure 3120. A comparison of the two figures shows that there is

an advantage in increasing the number of lags. The amplitudes of the residuals are smaller

when the sensors are in healthy condition and larger once a sensor fails.

Increasing the sampling period again resulted in a significant improvement of the failure

signatures. A model-based DSPR at 2Ts is shown in Figure 3.23. Comparing this figure

with Figure 3.18 we notice a significant difference=between the residuals. Considering that

we are using the same continuous-time state-space model, but now using a longer sampling

period, it is clear that the sampling period has a significant effect on the performance of

a parity relation. An example of a 20 lag identified DSPR with a 2Ts sampling period is

shown in Figure 3.24.
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Figure 3.21: Identified DSPR residuals r13 and r23. The output of Sensor D3

was reduced by a factor of 2 from sample number 180 to 500.
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Figure 3.22: Identified DSPR residuals r21 and r23, 20 lags. Sensor D2 has

failed to zero at sample number 150.
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Figure 3.23: Model-based DSPR residuals r12 and r13 , 10 lags, 2Ts. Sensor D1

has failed to zero at sample number 125.
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Figure 3.24: Identified DSPR residuals r21 and r23, 20 lags, 2Ts. Sensor D2 has

failed to zero at sample number 75.

67



3.7 Summary

In this chapter we have looked at the detection of displacement sensor failures using single

and double sensor parity relations. A comparison was made between a set of relations

obtained from a state-space model of the Mini-Mast and a set of relations that was obtained

by identifying the coefficients of the parity relations directly from a set of input-output

data. The state-space model included the first five modes of the mast. The model-based

relations failed to indicate all the failures and were very sensitive to noise. The sensitivity

to noise is a result of the very large gains at high frequencies of the corresponding Residual

Generators. The spectra of the model-based residuals indicate that the state-space model

gives an excellent fit at frequencies below 7 Hz at the expense of a poor fit at high frequencies.

Reduced order low frequency models are often used in control system design but the results

of this chapter show that they are not suitable to design Residual Generators for use in

failure detection.

The identified residuals always gave a clear indication of the failure. An analysis of the

Residual Generator transfer functions shows that the identified relations put more emphasis

at low frequencies and less at the high frequencies. The flat spectra of the residuals suggests

that it is important that the model fit the plant well even at high frequencies.

By identifying the parity coefficients directly from input-output data we had the freedom

of choosing the model order. In all the experiments an increase in the number of lags

(i.e. increasing the order of the model) led to an improvement of the failure signature. An

increase in the model order usually resulted in a smaller residual while the sensors were

in good health as well as an increase in the magnitude of the residual when a failure was

present.
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To improvethe performanceof the ResidualGeneratorin the caseof sensor-offfailures,

doublesensorsparity relationscanbe used. In all the experimentsand different failure

modesconsidered,the doublesensorparity relationsperformedbetter than their single

sensorparity relationcounterparts.The mainreasonfor the improvementis the inclusion

of an extrameasurementthat feedsdynamicsof the plant to the ResidualGeneratoreven

whenthe othersensorfails to zero.

Increasingthe samplingperiodresultedin a significantimprovementof the failuresigna-

tures. This is probablybecause,with a shortsamplingperiod,only a smallportion of one

periodof alowfrequencyiscoveredbyarelationwith theresultinglossof the importantlow

frequencyinformation.Furthermore,thesamemodelordermustmatchasmallerfrequency

band,givinga better fit.
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Chapter 4

Accelerometer and Gyro Failure

Detection

4.1 Introduction

In this chapter we discuss the sensor failure detection experiments conducted on some

accelerometers and gyros of the Mini-Mast. These experiments are similar in nature to

the experiments discussed in the previous chapter. Because we are using different types

of sensors, we will get the interesting case where sensors of mixed type are used to form

a double sensor parity relation. Three sensors are considered: two accelerometers that

measure linear acceleration in the global X and Y directions, and the Z-axis gyro. All the

sensors are at the tip of the mast. No state-space model was available for this set of sensors

so we present only identified relations.

Before we discuss the failure detection experiments we first look at the spectra of the mea-
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surements.In Figure4.I weshowthespectrumof theY-axis acceleration. The torque wheel
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Figure 4.1: Spectrum of the Y-axis acceleration. The torque wheel motors were

driven by discrete-time white noise that was passed through Iowpass filters with
20Hz bandwidth.

35

motors were driven by 20Hz bandlimited random signals. We see that the first torsional

mode is the dominant mode, with the first and second bending modes approximately 80 and

10dB down respectively. We also see the effect of the local modes at 15Hz and 19Hz. The

peaks in the spectrum at approximately 9Hz and 23Hz are probably the result of aliasing:

the peak at 23Hz is caused by the fourth bending mode at 43.4Hz and the peak at 9Hz

comes from a mode at 74.8Hz. Similarly, there are modes at 91.THz and 93.2Hz that alias

to 25 Hz and 26.5 Hz respectively. In this experiment the sensor signals were filtered by third

order analog lowpass filters before they were sampled, but the filtering was not enough to
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prevent aliasing. The bandwidth of the analog filters was 20Hz.

The solid line in F_igure 4.2 shows the spectrum of the same measurement, but this time
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Figure 4.2: Spectrum of the Y-axis acceleration. The torque wheel motors were

driven by discrete-time random signals that were held constant for 4 sampling

periods. The dashed line shows the spectrum when the sampling period is 2Ts.

1

J

35

the torque wheel motors were driven by random signals that were held constant for 4

sampling periods. The output was sampled at 1T, intervals, which corresponds to a sampling

frequency of 66.67Hz. Again we see the peaks at approximately 9 and 23Hz. The dashed

line in this figure shows the spectrum when we sample the output of the Y-axis accelerometer

at 2T, (33.33Hz). Here we clearly see how the local mode at 19Hz aliases to approximately

14 Hz. Although it was believed that the sensor outputs were filtered by 20 Hz analog filters

before they were sampled, it was found after the experiments were conducted that the analog
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filters wereinadvertentlysetto have100Hzbandwidths,whichis wayabovethe sampling

frequency.Althoughmostof the aliasedcomponentsare30dBor moredown,it wasfound

that the ambiguity causedby their presencedegradedthe performanceof the Residual

Generators.So all measurementsweredigitally filtered with a fihh order elliptical filter

with 0.5dB passbandrippleandstopbandattenuationof 40dB_the equivalentcontinuous-

timecutoff frequencywas7Hz. Thepassbandof this filter waschosento bewideenoughto

passthe first five modesof the Mini-Mastand still giveacceptableattenuationof the 9Hz

aliasedcomponent.The spectrumof the Z-axis gyro signal is shown in Figure 4.3 where

-100
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Figure 4.3: Spectrum of the Z-axis gyro signal. The torque wheel motors were

driven by discrete-t]me random signals that were held constant for 4 sampling
periods.

we see that the first torsional mode is by far the dominant mode.
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4.2 Single Sensor Parity Relations

For this set of experiments the torque wheel motors were driven by random signals that

were held constant for 4T_, while the sensor outputs were sampled at 1T, intervals. A

block diagram of the experimental setup is shown in Figure 4.4. In the block diagram we

'I MiniMast

Anti-alias

Filter

Yf

I ResidualGenerator

r

Postfilter rf

Figure 4.4: Experimental setup.

also show an additional filter at the output of the residual generator. In some experiments

we will show how additional filtering of the residuals can be used to improve the failure

signature. This filter will be called the postfilter and we will indicate when it is used. A

sixth order elliptical filter with 10Hz bandwidth, 0.5dB passband ripple and 60dB stopband

attenuation will be used in all the cases.

Figure 4.5 shows the failure of the Y-axis accelerometer at sample number 245 and Figure 4.6

shows a failure of the Z-axis gyro at sample number 255, In both cases identified SSPRs

with 20 lags were used. Although both residuals indicate the corresponding failures, they

contain high frequency noise and clearly will not give reliable indications of failures. The

same residuals of Figures 4.5 and 4.6 are shown in Figures 4.7 and 4.8, but this time after

the residuals were filtered by the postfilter. We see that lowpass filtering the residuals

definitely leads to improved failure signatures. Figures 4.9 and 4.10 show the same sensors
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Figure 4.5: SSPR for Y-axis accelerometer failure, 20 lags, 1Ts.

accelerometer has failed to zero at sample number 245.
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Figure 4.6: SSPR for Z-axis gyro failure, 20 lags, 1Ts. The gyro has failed to

zero at sample number 255.
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Figure 4.7: SSPR for Y-axis accelerometer failure, 20 lags, 1Ts. This residual

was filtered with the postfilter. The Y-axis accelerometer has failed to zero at

sample number 245.
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Figure 4.8: SSPR for Z-axis gyro failure, 20 lags, 1Ts. The residual was filtered

with the postfilter. The gyro has failed to zero at sample number 255.
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Figure 4.9: SSPR for Y-axis accelerometer failure, 20 lags, 2Ts.

accelerometer has failed to zero at sample number 117.
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Figure 4.10: SSPR for Z-axis gyro failure, 20 lags, 2Ts. The gyro has failed to

zero at sample number 137.

77



with the same type of failures at approximately the same points in time, but this time

using a sampling period of 2Ts. These two figures must be compared with Figures 4.5 and

4.6 respectively. First we note that the residuals have respectively 5 and 7.5 times larger

amplitudes. Furthermore, the ratios of the amplitudes in the failed and unfailed states

have increased considerably. The postfilter has not been applied to these residuals: the

improvement comes only from the increased sampling period. It was found that filtering

these residuals with the postfilter resulted in little improvement of the failure signature. In

the next section we look at double sensor parity relations.
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4.3 Double Sensor Parity Relations

Although the single sensor parity relations at 2Ts gave good performance there were failures

where the indications were only marginal, The next step is to Iool_ at double sensor parity

relations and hope that they will perform better. Figure 4.1i shows a failure of the X-axis

accelerometer at sample number 236 and Figure 4.12 shows a failure of the Z-axis gyro at

sample number 286. The number of lags used was (11,10), i.e., the parity relations had

the form rij as shown in Equation (2.37), and we use the notation (i, j) to indicate the

number of lags used. In both cases the unfiltered DSPR residuals are shown. We now

have the interesting case where sensors of mixed type are used to construct the parity

relations. The residual at the top of Figure 4.11 used the A-axis and Y-axSs accelerometer

measurements to compute the residual, while the residual shown at the bottom of this

figure was computed from the X-axis accelerometer and Z-axis _yro measurements. A

comparison of these residuals with their 20 lag, 1Ts single sensor counterparts (Figures 4.5

and 4.6) shows that we get a significant improvement by using the double sensor parity

relations. It is again possible to clean up the signals with the post filter but we will not

show the results here.

An increase in the sampling period again leads to a significant improvement in the fail-

ure signatures as shown in Figures 4.13 and 4.14. Note that the output of the Residual

Generators are shown in these figures: no extra filtering was applied to the residuals. In

Figure 4.15 we l_ave simulated the failure of an accelerometer that gives the correct output

when the acceleration is positive and zero when the acceleration is negative. This type of

failure can occur when a sensor is powered by a dual rail power supply and the negative

supply falls away. The residuals clearly indicate this type of failure.

Despite the good results that we have shown so far, the Generalized Parity Relations are
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Figure 4.11: DSPR for X-axis accelerometer failure, (11,10) lags, ITs.

Top: residual with sensor pair (X-axis accelerometer,Y-axis accelerometer);

Bottom: residual with sensor pair (X-axis accelerometer,Z-axis gyro).

The X-axis accelerometer has failed to zero at sample number 236.
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Figure 4.12: DSPR for Z-axis gyro failure, (11,10) lags, 1T,. The gyro has

failed to zero at sample number 286.The residual at the top was constructed

from the pair (X-axis accelerometer, g-axis gyro) and the residual at the bottom

from the pair (Y-axis accelerometer,Z-axis gyro).
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Figure 4.13: DSPR for X-axis accelerometer failure, (11,10) lags, 2Ts.

Top: residual with sensor pair (X-axis accelerometer,Y-axis accelerometer);

Bottom: residual with sensor pair (X-axis accelerometer,Z-axis gyro).

The X-axis accelerometer has failed to zero at sample number 118.
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Figure 4.14: DSPR for Z-axis gyro failure, (11,10) lags, 2Ts. The gyro has

failed to zero at sample number 143. The residual at the top was constructed

from the pair (X-axis accelerometer, Z-axis gyro) and the residual at the bottom

from the pair (Y-axis accelerometer, Z-axis gyro).
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Figure 4.15: DSPR for X-axis accelerometer failure, (11,10) lags, 2Ts. The out-

put of the X-axis accelerometer was half wave rectified from sample number 125

till the end.

Top: residual with sensor pair (X-axis accelerometery'-axis accelerometer);

Bottom: residual with sensor pair (X-axis accelerometer,Z-axis gyro).
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still sensitive to certain parameter variations. In Figure 4.16 we show a failure of the Z-axis

gyro at sample number 250. The torque wheel motors were driven by 10wpass filtered white

noise. The coefficients of the single sensor parity relation were identified on a different input-

output data set, but with the motors driven by a similar type of input signal. Figure 4.17

shows a failure of the same sensor at the same time, using the same data set. However,

the parity relation coefficients were identified on an input-output data set where the motors

were driven by random signais-that were held constant for 4Ts. We see that the residual

gives no indication of the failure. Repeating this test on the accelerometers gave the same

result, i.e., no indication of failures. One possible explanation is that the torque wheel

motors have a significant amount of friction so that the amplitudes of the input signals

will determine how much the wheels are actually excited. The amplitudes of the lowpass

filtered input signals were approximately 7 times smaller than the amplitudes of the input

signals that were held constant. It is therefore difficult to conclude whether the difference

in performance is due to the different type of input signals that were used or due to the

different magnitudes of the input signals. Either case, it is a disturbing fact that the parity

relations show this sensitivity to the different input signals.
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Figure 4.16: SSPR for Z-axis gyro failure, 20 lags, 1Ts. TI'+_gyro has failed to

zero at sample number 250.
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Figure 4.17: SSPR for Z-axis gyro failure, 20 lags, 1Ts. The gyro has failed to

zero at sample number 250.
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4.4 Summary

In this chapter we have discussed the detection of accelerometer and gyro failures. It

was found that the wider bandwidth of the measured signals can lead to aliasing that in

turn degrades the performance of the residual generators. With proper anti-allas filters in

place, the double sensor parity relations givegood failure signatures. The sampling period

again proved to be a very important parameter in the design of the Residual Generator.

Despite the good performance, the parity relations are still very sensitive to the type and/or

magnitude of the signals that are used to excite the system.

We also showed examples of parity relations that were constructed using different types of

sensors. In all the cases considered the double sensor parity relations gave clear indications

of all the different failure modes. It must be noted that this improved performance comes

with the burden of an increased computational load.

It must be noted that we have shown results using parity relations with 20 lags throughout

this chapter. It was found that, because this set of sensors have higher bandwidths than

the displacement sensors, lower order models simply did not give clear indications of the

failures.
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Chapter 5

Actuator Failure Detection

In this chapter we discuss the detection of actuator failures on the Mini-Mast. For the

experiments conducted here, the torque wheel motors were driven by lowpass filtered ran-

dom signals. The bandwidths of these filters were 10 Hz, and the baseline sampling period

of 0.015 seconds, i.e., 1Tawas used. The measurements were filtered by 20Hz third order

analog filters before they were sampled and digitized. We will present data only on results

where the Bay 18 displacement sensors were used to obtain measurements, as the results

obtained by using the accelerometers and gyro were similar in nature.

A failure was simulated while the experiment was conducted by disconnecting the com-

manded signal to a torque wheel motor. The model-based single actuator parity relation

for this failure is shown in Figure 5.1. The actua.1 time of failure is not known but should

be approximately at sample number 500. In the figure we see that there is no indication

of the failure at all. The residual of the same failure is shown in Figure 5.2 but this time

an identified parity relation with 20 lags was used to detect the failure. Even though this

residual is significantly smaller than the model-based residual, no indication of the failure
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is visible.

The above experiment was repeated by using double actuator parity relations, and both 1Ts

and 2Ts sampling periods were used without any visible improvement. Single and double

actuator parity relations were also identified using the X and Y-axes accelerometers and

Z-axis gyro but they, too, were unable to detect the failure.

To gain more insight into the behavior of the actuator parity relations a computer simulation

was conducted. Bandlimited random input signals were generated and a failure of the }:

torque wheel motor was simulated in the input data by zeroing the actual signal going to

the plant. The Y-torque wheel motor was zeroed between samples number 213 and 284.

The corresponding outputs were generated using the Mini-Mast state-space model given in

Appendix B. The SAPR residual r2 is shown if Figure 5.3.

This simulation was repeated, but this time noise was added to the measurements before

they were used by the Residual Generator. ft, block diagram of this is shown below.

Mini-Mast

noise

ui

Residual

Generator

ri

Actuator failure simulation.

The standard deviation of the noise that was added to the measurement was 1% of the

standard deviation of the measurement. The SAPR residual for this simulation is shown in

Figure 5.4. A comparison of the magnitudes of the residuals in Figures 5.3 and 5.4 shows
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Figure 5.3: SAPR residual for ):torque wheel failure. In this simulation the

torque wheel was in a failed state between samples 213 and 284.

that the single actuator parity relations are extremely sensitive to noisy measurements. This

sensitivity is also clearly visible when we look at the contributions of the measurements, rv,

and control inputs, r_,, to the residual r2 as shown in Figure 5.5. In these figures we see that

the noise in the measurement is amplified so much that it is orders of magnitude larger than

the contribution of the control signal r_,. The extreme sensitivity to noise is easily explained

when we look at the transfer functions of the corresponding Residual Generator, shown in

Figure 5.6. In this figure we see that the transfer functions from the measurements y to

the residual r2 have very large gains over a large portion of the frequency band, especially

at high frequencies, and therefore the smallest amount of noise in the measurements will

be amplified and bury the residual deep in it. The figure also shows that the gain of the

transfer function from the control signal u2 to the residual r2 is small compared to the gains
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Figure 5.4: SAPR residual for Y-torque wheel failure with noisy measurements.

The standard deviation of the added noise is 1% of the standard deviation of

the measurement. The torque wheel was in a failed state between samples 213

and 284.

of the other transfer functions. Simulations with double actuator parity relations showed

similar sensitivity to noise and gave no improvement.
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Figure 5.5: Contribution ru and ru to the SAPR residual for Y-torque wheel.

The standard deviation of the noise is 1% of the standard deviation of the

measurement. The torque wheel was in a failed state between samples 213 and

284.
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To summarize,detectingactuatorfailureson the Mini-Mast usingGeneralizedParity Re-

lationswaswithout anysuccess.The mainreasonfor the poor performanceof the parity

relationsis theextremesensitivityto noise,a resultof the veryhigh gainson the transfer

functionsfromthemeasurementsto theresidual.Also,thesmallcontributionof thecontrol

signalto the residualmakesits absenceveryhardto detect.This sensitivityis inherentin

theformulationof actuatorparity relations.
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Chapter 6

Conclusion

Space based stations put strict requirements on the reliability of the control system compo-

nents. Because these systems will be used for long unattended periods of time the control

system must be tolerant to the failure of its actuators and sensors. The reliability of the sys-

tem can be increased through hardware redundancy, but this leads to increased weight and

can be impractical when many components are used by the control system. The reliability

of the system can also be increased with analytical redundancy that uses the redundancy

that is present in the dynamics of the plant and the input-output histories.

Ideally one would require that a failure detection and isolation system be independent of

the mode of failure and it should also be applicable to both sensors and actuators. Two

methodologies satisfy these requirements: the Failure Detection Filter and the method of

Generalized Parity Relations. In this Work we discussed the application of Generalized

Parity Relations to an experimental flexible space structure, the NASA Langley Mini-Mast.

Two different sensor sets were considered and the detection of actuator failures was also

investigated. The performance of a reduced order model that included the first five modes
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of the plant (referredto asmodel-basedrelations)wascomparedto a setof parity relations

that wasidentifieddirectlyfrom input-outputdata (referredto asthe identifiedrelations):

The effectof the modelorder and samplingperiodon the performanceof the Residual

Generatorwerealsoshown.

The first setof sensorsconsistedof the threedisplacementsensorsat the tip of the mast:

Thesesensorsmeasuredthedisplacementof thetip relativeto afixed, rigid structurethat

wasbuilt aroundit. Themodel-basedresidualssufferedfromsensitivityto noiseanddid not

givereliableindicationsof thefailures.Theidentifiedrelationsgavegoodfailuresignatures

on all the differentfailure modesthat weresimulatedin the data. -Becauseall analytical

redundancytechniquesusea modelof the plant, they all sufferfrom mismatchesbetween

the modeland therealplant. By identifyingthe coefficientsof theparity relationsdirectly

from input-outputdata theneedfor anaccuratestate-spacemodelof theplant disappears.
±

Identifying the parity relations has the advantage that it is easy to increase the model

of the order if the low order models that are typically used by the control system give

unacceptable performance. Using double sensor parity relations led to no improvement for

the model-based relations, while the identified relations showed a significant improvement

in the failure signature, a It was also illustrated that the sampling period had a significant

effect on the performance of the Residual Generators; it was found that the longer sampling

periods gave better failure signatures. The reason for this improved performance comes

from the smaller frequency band that needs to be matched by a model with a given order.

The second sensor set consisted of two accelerometers and a gyro, all mounted at the tip

of the mast. A state-space model was not available for this set of sensors so all the results

apply to identified relations. Because of the wider bandwidths of these sensors it was

1This clearly shows that the reliabiliiy problem can be solved by instrumenting all flexible space structures

with displacement sensors and using identified relations. The only problem that remains to be solved is

building a rigid, fixed structure around the flexible structure.
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found that wehad to increasethe order of the modelto get goodperformancefrom the

ResidualGenerators.The singlesensorparity relationsperformedsatisfactorilyand the

doublesensorparity relationsgavegoodfailuresignatures.Again, increasingthesampling

periodresultedin a significantimprovementof the failuresignatures.This combinationof

sensorsalsoillustrated that it is possibleto usesensorsof mixedtype to constructparity

relations.

A set of parity relationsthat wasidentifiedwhenthe mast wasexcitedby bandllmited

signalsperformedpoorlywhenappliedto datathat wasrecordedwhenthemastwasdriven

by widebandsignals.Themagnitudesof the input signalsdifferedconsiderablysothat the

poorperformanceis probablycausedby the nonlinearitiesof the torquewheelactuators.

Thedetectionof actuatorparity relationsprovedto beverydifficult. It wasfoundthat the

ResidualGeneratorshad very largegainsassociatedwith the transferfunctionsfrom the

measurementsto the residual,makingit extremelysensitiveto noisein the measurements.

This resultedin residualsthat weresonoisythat it completelyobscuredthe contribution

of the controlinput.

Future Work

In this work we presented many examples where parity relations gave a clear indication of

the corresponding failure. However, no statistical tests were performed to see how good

they perform when subjected to thousands of failures. Clearly, this is a task that must be

performed before this method can be applied to a practical system.

In the Introduction we mentioned that there is another failure detection and isolation

method that does not require the specification of failure modes and is applicable to both

sensors and actuators. It would be interesting to compare the performance of this method,

called the Failure Detection Filter, to the method of Generalized Parity Relations that was

98



usedin this work.

ThoughFDI hasbeenstudiedfor manyyears,severalproblemsremainunsolved.A brief

summaryof someproblemsthat needfurther investigationis givenhere. It waspointed

out that an increasein the samplingperiod led to improvedfailure signatures.Although

noexamplesweregivenit wasfoundthat increasingthe Samplingperiodbeyonda certain

point yieldedno improvement.It thusappearsthat theremight beanoptimumsampling

period.Evenif wecanfind suchanoptimalsamplingperiodanalytically,it maynot bean

acceptablesamplingperiod for useby the controller. It is easyto deriveparity relations

whenthe samplingperiod usedby the ResidualGeneratoris an integermultiple of the

samplingperiodusedby the controller.However,the analysisof the systemis complicated

becausethe resultingResidualGeneratoris not time invariantany more. Becauseof the

largeimprovementthat canbe realizedby the selectionof agoodsamplingperiodit is an

areathat warrantsfurther investigation.

It waspointedout at the end of Section2.2that the constructionof doublesensorparity

relationsleadsto a choiceof two relations. An exampleof this wasgivenin Section3.6

wherewesawthat the useof the secondrelationgavebetter failure signatures.Analysis

of doublesensorparity relationsmayleadto additionalinsight to why this happenedand

maybehint at whichrelationshouldbeusedfor bestresults.

In Section2.1wementionedthat a parity relation corresponds to an ARX model of the

system. An ARX model is but one of several models to describe a system. A more general

model structure is given by (see Ljung [7])

/3(q) u(t)
&(q)y(t) = --_

where

_ltitlc_(q) = 1 + cqq -1 + ... + c_,_.q ,
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q is the shift operator, and _(q), 7(q), 8(q) and ¢(q) have similar definitions. We see

that the ARX model is obtained from this general model by setting 7 = 8 = ¢ = 1. By

adopting a more general model as given above it may be possible to describe a greater

class of systems and thus broaden the number of systems that can benefit from analytical

redundancy techniques. The applicability of this model to practical systems should be

investigated.

When doing model validation, r(t) (see Equation (6.1)) is studied in great detail as this

signal contains a wealth of information about the identified model. Thus we see that model

validation is similar in nature to failure detection. Robust identification techniques are con-

stantly being developed. Because analytical redundancy methodologies all rely on a model

of the plant robustness is always an issue. The app].icability of these robust identification

techniques to failure detection must therefore be investigated.
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Appendix A

Second order system analysis

In this appendix we will find the discrete-time descrlpfion of a continuous-tlme second order

system. Let the continuous-time system be

2
_n

y(s) = s2 + 2(w,_s + w_ u(s)' (A.1)

where w,_ is the natural frequency and ( < 1 the damping ratio. A continuous-time state-

space description is (see Chen [3], chapter 6)

_(t)

/

| o -,4

1 -2(wn

03 n

_(t) +
0

u(t), (h.2)

y(t) = [0 q_,(t) (A.3)

= c'=(t). (A.4)

The discrete-time state-space description is given by Equations (2.8) - (2.11).

damped natural frequency be denoted by

O2d:¢dn_-1"-_(2.

Let the

(A.5)
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Evaluatingthe equationsfor A and B we get

A
= l all

a21

(A.6)
a12

a22

= e_¢_,,Ts cos(waTs) + _ sin(wriTs) -w_ sinrw-'r
Wd _ _'_J , (A.7)

1 sin(walT,) wC____•Wdm cos(wriTs)-- wd sm(wdT,)

and

B
bll 1

= (A.8)

b21

The numerator and denominator polynomials are found by evaluating Equation (2.68)

y(z) = C'(ZZ- A)-lbu(z)

n(z)
d(z)u(z)

b21z -1 + (a21bll - allb21)z -2

1 - (all + a22)z -1 + (aila22 -- al2a21)Z -2"

(A.10)

(A.11)

(A.12)
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Appendix B

Mini-Mast state-space model

The continuous-time state-sPace model of the Mini-Mast is given by

A1 0

0 A5

=(t) = =(t) +

Sl

• _,(t)

B5

where

A1 _

0 1 ) ,-28.920733 -0.347406

(B.1)

(B.2)

A2

0 1),-28.839048 -0.228771

(B3)

A 3 _-

0 1),-729.718377 -3.873707

(B.4)
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A 4 _-

0 1

-1477.941136 -1.829934

(B.5)

A 5 =

0 1

-1501.392005 -0.774956

(B.6)

0 0 0),0 -0.006166 0

(B.7)

B2 --

0 0 0),-0.004122 0 0

(B.8)

S 3

0 0 0/,0 0 0.194500

(B.9)

8 4 -_

0 0 0

-0.002723 -0.002723 0

(B.10)

S 5 _-

0 0 0

0.002549 -0.002549 0

(B.11)
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The output matrix for the setof displacement sensors at the tip of the mast is

C

4.846400 0 -5.821079 0 4.846400 0 0.544624 0 1.069679

-0.798394 0 5.784700 0 4.911925 0 -1.740127 0 -1.302644

-3.724298 0 -0.288348 0 4.633496 0 -1.597996 0 -0.142804
0/0 •

0

(B.12)

The D m_trix is

D--O. (B.13)
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